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I. I NTRODUCTION

THE estimation of time-activity curves and kinetic model
parameters directly from projection data is potentially use-

ful for clinical dynamic single photon emission computed to-
mography (SPECT) studies, particularly in those clinics that
have only single-detector systems and thus are not able to per-
form rapid tomographic acquisitions. Because the radiopharma-
ceutical distribution changes while the SPECT gantry rotates,
projections at different angles come from different tracer dis-
tributions. A dynamic image sequence reconstructed from the
inconsistent projections acquired by a slowly rotating gantry
can contain artifacts that lead to biases in kinetic parameters
estimated from time-activity curves generated by overlaying re-
gions of interest on the images. If cone beam collimators are
used and the focal point of the collimators always remains in a
particular transaxial plane, additional artifacts can arise in other
planes reconstructed using insufficient projection samples [1]. If
the projection samples truncate the patient’s body, this can result
in additional image artifacts. To overcome these sources of bias
in conventional image based dynamic data analysis, we and oth-
ers have been investigating the estimation of time-activity curves
and kinetic model parameters directly from dynamic SPECT
projection data by modeling the spatial and temporal distribu-
tion of the radiopharmaceutical throughout the projected field
of view [2–8].

In our previous work we developed a computationally effi-
cient method for fully four-dimensional (4-D) direct estimation
of spatiotemporal distributions from dynamic SPECT projection
data [5], which extended Formiconi’s least squares algorithm for
reconstructing temporally static distributions [9]. In addition,
we studied the biases that result from modeling various orders
of temporal continuity and using various time samplings [5].
In the present work, we address computational issues associ-
ated with evaluating the statistical uncertainty of spatiotemporal
model parameter estimates, and use Monte Carlo simulations to
validate a fast algorithm for computing the covariance matrix
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for the parameters. Given this covariance matrix, the covari-
ance between the time-activity curve models for the blood input
function and tissue volumes of interest can be calculated and
used to estimate compartmental model kinetic parameters more
precisely, using nonlinear weighted least squares [10,11].

II. FAST COMPUTATION OF STATISTICAL UNCERTAINTY

FOR SPATIOTEMPORAL DISTRIBUTIONS

Following our development in [5], time-varying activity con-
centrations within volumes of interest encompassing the pro-
jected SPECT field of view can be modeled by selecting a set
of temporal basis functions capable of representing typical time
variations and having desired smoothness properties. Similarly,
the spatially nonuniform activity concentration within a particu-
lar volume of interest can be modeled by selecting an appropri-
ate set of spatial basis functions. Given a set of temporal basis
functions and sets of spatial basis functions for the volumes of
interest, coefficients for the resulting spatiotemporal basis func-
tions can be estimated directly from the SPECT projection data,
along with the covariance matrix for the coefficients.

A. Covariance Matrix for the Spatiotemporal Basis Function
Coefficients

Denoting the projection of themth spatial basis function along
ray i at anglej by um

ij , and the integral of thenth temporal ba-
sis function during the time interval associated with anglej of
rotationk by vn

jk, the projection equations can be expressed as

pijk =
M∑

m=1

N∑
n=1

amnu
m
ij v

n
jk, (1)

where thepijk are the modeled projections, theamn are the lin-
ear coefficients associated with the time integrals of the projec-
tions of the spatiotemporal basis functions,M is the number of
spatial basis functions, andN is the number of temporal basis
functions. The criterion which is minimized by varying the lin-
ear coefficientsamn is the weighted sum of squares function

χ2 =
I∑

i=1

J∑
j=1

K∑
k=1

(p∗ijk − pijk)2

Wijk
, (2)

where thep∗ijk are the measured projections, theWijk are
weighting factors,I is the number of projection rays per angle,
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J is the number of angles per rotation, andK is the number of
rotations. Typically, the weighting factors are either unity for an
unweighted fit or the estimated variances of the projections for
a weighted fit.

Equations (1) and (2) can be rewritten in matrix form as

p = Fa (3)

and

χ2 = (p∗ − Fa)TW(p∗ − Fa), (4)

respectively, wherep is anIJK element column vector whose
[i + (j − 1)I + (k − 1)IJ ]th element ispijk, F is anIJK ×
MN matrix whose{[i + (j − 1)I + (k − 1)IJ ], [m + (n −
1)M ]}th element isum

ijv
n
jk, a is anMN element column vector

whose[m+(n−1)M ]th element isamn, p∗ is anIJK element
column vector whose[i + (j − 1)I + (k − 1)IJ ]th element is
p∗ijk, andW is anIJK×IJK diagonal matrix whose[i+(j−
1)I + (k − 1)IJ ]th diagonal element is1/Wijk. The criterion,
χ2, is minimized by the vector of spatiotemporal basis function
coefficients

â = (FTWF)−1FTWp∗. (5)

The covariance matrix for the coefficientsâ is

cov(â) = (FTWF)−1FTWcov(p∗)WF(FTWF)−1, (6)

where cov(p∗) is the covariance matrix for the measured projec-
tions. Given an estimate of cov(p∗), estimates of the statistical
uncertainties of the coefficientŝa are the square roots of the di-
agonal elements of the covariance matrix given by equation (6)
and are denoted individually bŷσâmn

. In general, the errors in
the coefficients are correlated and the covariance matrix given
by equation (6) has nonzero elements off the diagonal.

For an unweighted least squares reconstruction of the spa-
tiotemporal basis function coefficientŝa (i.e., for W an iden-
tity matrix), an estimate of the symmetricMN ×MN covari-
ance matrix cov(â) can be obtained quickly from equation (6)
as follows. Assuming Poisson noise, the diagonal matrix hav-
ing the modeled projectionŝp = Fâ along the diagonal can be
used as an estimate of the covariance matrix for the measured
projections. Substituting this diagonal matrix for cov(p∗) and
the identity matrix forW, equation (6) can be rewritten as

cov(â) = (FTF)−1FTdiag(Fâ)F(FTF)−1. (7)

We have presented a method for quickly calculating(FTF)−1

in [5]. Using a similar development, the symmetricMN×MN
matrixFTdiag(Fâ)F can be calculated quickly as follows. De-
noting the{[m + (n − 1)M ], [m′ + (n′ − 1)M ]}th element of
FTdiag(Fâ)F byψmnm′n′

, one has

ψmnm′n′
=

I∑
i=1

J∑
j=1

K∑
k=1

um
ij v

n
jk ×

[
M∑

m′′=1

N∑
n′′=1

âm′′n′′um′′
ij vn′′

jk

]
× um′

ij v
n′
jk,

(8)

where âm′′n′′ is the [m′′ + (n′′ − 1)M ]th element ofâ, and
“×” denotes scalar multiplication. Rearranging the summations
yields

ψmnm′n′
=

M∑
m′′=1

N∑
n′′=1

âm′′n′′ ×

J∑
j=1

[
I∑

i=1

um
iju

m′
ij u

m′′
ij

][
K∑

k=1

vn
jkv

n′
jkv

n′′
jk

]

=
M∑

m′′=1

N∑
n′′=1

âm′′n′′

J∑
j=1

αmm′m′′
j βnn′n′′

j

=
M∑

m′′=1

N∑
n′′=1

âm′′n′′γmnm′n′m′′n′′
,

(9)

where the factorsαmm′m′′
j andβnn′n′′

j denote the summations∑I
i=1 u

m
iju

m′
ij u

m′′
ij and

∑K
k=1 v

n
jkv

n′
jkv

n′′
jk , respectively, and the

factorγmnm′n′m′′n′′
denotes the sum

∑J
j=1 α

mm′m′′
j βnn′n′′

j .
Using the factorization given by equation (9), it can be

shown that most of the overhead associated with computing
the symmetric matrix elementsψmnm′n′

lies in calculating the
αmm′m′′

j factors and theγmnm′n′m′′n′′
factors. These calcula-

tions take about[(I/N3) + 1]JQ multiply-and-add operations,
whereQ = (MN)2(MN + 1)/2. By comparison, relatively
straightforward computation of the summations given by equa-
tion (8) takes aboutIJKQ multiply-and-add operations. Thus,
for the computer simulations described in Section III, for which
I/N3 = 1/2, the factorization given by equation (9) reduces the
computation by a factor of about(2/3)IK ≈ 20,000.

B. Covariance Between Integrated Time-Activity Curve Model
Segments

Given an estimate of cov(â), the covariance matrix for the
spatiotemporal basis function coefficients, estimates of the co-
variance between integrated segments of the time-activity curve
models for the volumes of interest can be obtained as follows.

The integral of the time-activity curve model for volume of
interestm, during the time interval associated with anglej of
rotationk, can be expressed as

∑N
n=1 âmnv

n
jk. Thus, the co-

variance of this time integral with the time integral associated
with volume of interestm′ during anglej′ of rotationk′ is

cov

(
N∑

n=1

âmnv
n
jk,

N∑
n=1

âm′nv
n
j′k′

)

=
N∑

n=1

N∑
n′=1

vn
jk cov(âmn, âm′n′) vn′

j′k′ ,

(10)

and the variance of each time integral is

σ2
jkm = var

(
N∑

n=1

âmnv
n
jk

)

=
N∑

n=1

N∑
n′=1

vn
jk cov(âmn, âmn′) vn′

jk.

(11)
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As a figure of merit related to the global precision of the time-
activity curve model for volume of interestm, the following ex-
pression yields a squared noise-to-signal ratio calculated as the
mean (over all of the time segments) of the expected values of
the squared errors between the integrated segments of the “true”
and modeled curves, normalized by the mean square value of
the integrated segments of the “true” curve:

ξ2m =

∑J
j=1

∑K
k=1 σ

2
jkm∑J

j=1

∑K
k=1

[∑N
n=1 âmnvn

jk

]2 . (12)

Substituting equation (11) into equation (12), the squared noise-
to-signal ratioξ2m can be calculated quickly by rearranging the
summations, precomputing the inner products of the temporal
basis functions,νnn′

=
∑J

j=1

∑K
k=1 v

n
jkv

n′
jk, and exploiting the

symmetry with respect to the indicesn andn′:

ξ2m =
∑N

n=1

∑N
n′=1 cov(âmn, âmn′)νnn′∑N

n=1

∑N
n′=1 âmnâmn′νnn′ . (13)

III. C OMPUTERSIMULATIONS

To validate the fast algorithm presented in Section II, 1600 re-
alizations of cone beam projection data having Poisson noise
were generated using the simulation apparatus described in [5].

Simulated spatiotemporal distributions were obtained using
the Mathematical Cardiac Torso (MCAT) phantom developed at
the University of North Carolina [12]. The emission phantom
(Fig. 1) was composed of 128 contiguous 1.75 mm-thick slices
and contained the blood pool, three myocardial tissue volumes
of interest (normal myocardium, septal defect, and lateral de-
fect), liver, and background tissue. Projections were attenuated
using the corresponding MCAT attenuation phantom.

The simulated time-activity curves (Fig. 2) mimicked the ki-
netics of teboroxime [13]. The simulated 15 min data acquisi-
tion consisted ofI = 2048 cone beam projection rays per an-
gle (64 transverse× 32 axial),J = 120 angles per revolution,
andK = 15 revolutions, and thus yielded about 3.7 million pro-
jection samples. The projection bins were 7 mm× 7 mm at
the detector, and the detector was 30 cm from the center of the
field of view. The cone beam collimators had a hole diameter of
2 mm, a length of 4 cm, and were offset 1 cm from the detector.
The focal length was 70 cm, which resulted in truncation of the
data (Fig. 1). Attenuation and geometric point response were
modeled using a ray-driven projector with line length weight-
ing [14]. Scatter was not modeled. The amplitude of the simu-
lated blood input function was adjusted so that about 10 million
events were detected using the cone beam collimators.

The spatial basis projection factorsum
ij were defined by for-

ward projecting each of the six known emission volumes com-
posing the MCAT phantom (Fig. 1). Each emission volume was
modeled to contain spatially uniform activity, which yielded
M = 6 sets of spatial basis projection factors.

The temporal basis integral factorsvn
jk were defined by inte-

gratingN = 16 splines spanning 15 time segments having ge-
ometrically increasing length (Fig. 3). Piecewise quadratic B-
splines were used with an initial time segment length of 10 sec.
The resulting curve models were continuous through their first

Fig. 1. Transverse cross section through the MCAT emission phantom, showing
the truncation of data resulting from the use of cone beam collimators.
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Fig. 2. Simulated time-activity curves for the volumes shown in Fig. 1.
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Fig. 3. Piecewise quadratic B-spline temporal basis functions. Sixteen splines
are used to span 15 time segments having geometrically increasing length.
The initial time segment length is 10 sec. The thirteenth spline is shown as
a solid curve.

derivative and yielded errors of less than 2% for noiseless pro-
jections, where the error was defined to be the root mean square
(rms) difference between the simulated curve and the spline
model, normalized by the rms value of the simulated curve [5].

The computational benefit of using the factorization given
by equation (9) to estimate the covariance matrix for the spa-
tiotemporal basis function coefficients was evident in the sim-
ulations. The number of multiply-and-add operations used to
calculateFTdiag(Fâ)F was reduced from about 1.6 trillion to
about 80 million. Using a 194-MHz R10000-based SGI work-
station, it took 34 sec to estimate the 96 coefficients for the
spatiotemporal basis functions, their covariance matrix, and the
squared noise-to-signal ratios given by equation (13).
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TABLE I

ACTUAL AND ESTIMATED STATISTICAL UNCERTAINTIES FOR SPATIOTEMPORAL BASIS FUNCTION COEFFICIENTS, FOR 1600REALIZATIONS OF NOISY

PROJECTIONS. THE SAMPLE STANDARD DEVIATIONS OF THE COEFFICIENTS(THE SECOND COLUMN IN EACH OF THE FOUR SUB-TABLES) AGREE CLOSELY

WITH THE SAMPLE MEANS OF THE ESTIMATED STATISTICAL UNCERTAINTIES(THE THIRD COLUMN IN EACH OF THE FOUR SUB-TABLES).

blood pool normal myocardium septal defect lateral defect
n â1n σ̂â1n

â2n σ̂â2n
â3n σ̂â3n

â4n σ̂â4n

sample sample sample sample sample sample sample sample sample sample sample sample
mean sdev mean mean sdev mean mean sdev mean mean sdev mean

1 0.279 0.128 0.131 0.0102 0.166 0.166 -0.0529 1.28 1.29 -0.212 0.747 0.762
2 5.20 0.138 0.140 1.05 0.171 0.174 0.559 1.33 1.35 0.979 1.47 1.46
3 7.65 0.157 0.160 2.30 0.185 0.187 1.36 1.89 1.88 1.38 3.00 2.99
4 8.20 0.172 0.175 3.75 0.331 0.333 1.89 3.04 3.05 2.42 1.95 1.95
5 7.19 0.153 0.160 5.15 0.222 0.219 2.33 1.91 1.94 3.25 1.26 1.27
6 5.40 0.105 0.107 6.30 0.148 0.145 2.70 1.20 1.24 3.58 1.75 1.73
7 3.51 0.0974 0.0953 7.07 0.141 0.140 2.87 1.50 1.54 3.59 0.876 0.864
8 2.00 0.0658 0.0668 7.36 0.108 0.109 2.67 0.886 0.904 3.11 1.08 1.09
9 1.04 0.0545 0.0543 7.21 0.0839 0.0836 2.45 0.600 0.602 2.44 0.593 0.602
10 0.535 0.0464 0.0446 6.71 0.0743 0.0735 2.02 0.560 0.562 1.69 0.418 0.411
11 0.308 0.0361 0.0362 5.98 0.0632 0.0628 1.57 0.486 0.477 1.03 0.364 0.354
12 0.208 0.0305 0.0298 5.13 0.0538 0.0530 1.13 0.397 0.399 0.592 0.296 0.300
13 0.149 0.0250 0.0245 4.20 0.0454 0.0441 0.761 0.327 0.325 0.307 0.258 0.253
14 0.103 0.0197 0.0201 3.28 0.0360 0.0365 0.478 0.268 0.270 0.179 0.206 0.207
15 0.0657 0.0167 0.0168 2.39 0.0303 0.0308 0.268 0.232 0.234 0.0853 0.165 0.170
16 0.0399 0.0169 0.0169 1.64 0.0314 0.0313 0.135 0.270 0.269 0.0651 0.161 0.164

TABLE II

ACTUAL AND ESTIMATED NOISE-TO-SIGNAL RATIOS FOR TIME-ACTIVITY

CURVES, FOR 1600REALIZATIONS OF NOISY PROJECTIONS.

noise-to-signal ξm

ratio (%) (%)
sample sample sample sample
mean sdev mean sdev

blood pool 1.51 0.35 1.56 0.008
normal myocardium 1.13 0.27 1.16 0.003

septal defect 32.5 9.1 32.5 2.6
lateral defect 28.5 8.0 28.6 2.3

liver 0.167 0.031 0.170 0.0001
background 0.242 0.058 0.247 0.0002

Table I shows that the sample means of theσ̂âmn
(the square

roots of the diagonal elements of the estimated covariance ma-
trix) were within 5% of the sample standard deviations of the
âmn (the estimated spatiotemporal basis functions coefficients),
for the blood pool and myocardial tissue volumes. For the liver
and background tissue, the agreement was to within 4%. The
coefficients of variation for thêσâmn

were less than 2%.
Table II shows that the sample means of theξm (the estimated

noise-to-signal ratios) were within 4% of the sample means of
the rms differences between the 1600 sets of time-activity curve
models and their corresponding mean curves, normalized by the
rms values of the mean curves. The time-activity curves for the
septal and lateral defects exhibited the largest variability, be-
cause of their small spatiotemporal support.

IV. FUTURE DIRECTIONS

The fast algorithm presented in Section II will facilitate the
study of the statistical variability that results from modeling var-
ious orders of temporal continuity and using various time sam-
plings, when estimating time-activity curves directly from dy-
namic cone beam SPECT projections. It may also allow com-
partmental model kinetic parameters to be estimated from the
curves more precisely, using nonlinear weighted least squares.
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